2016 European guideline on Mycoplasma genitalium infections

Jørgen Skov Jensen*1, Marco Cusini2, Mikhail Gomberg3

- ¹Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
- ² Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- ³ Chief Researcher, Moscow Scientific and Practical Centre of Dermatovenereology and Cosmetology.

*Corresponding author:

Jørgen Skov Jensen, Microbiology and Infection Control, Sexually Transmitted Infections, Research and Development, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark. Tel: +45 3268 3636, Fax: +45 3268 8129. E-mail: (jsj@ssi.dk)

Guideline editor:

Prof. Harald Moi, MD PhD, Section of STI, Department of infectious diseases, dermatology and rheumatology, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Norway

Running title:

M. genitalium guideline

Abstract

M. genitalium infection contributes to 10-35% of non-chlamydial non-gonococcal urethritis in men. In women, *M. genitalium* is associated with cervicitis and pelvic inflammatory disease (PID). Transmission of *M. genitalium* occurs through direct mucosal contact.

Clinical features and diagnostic tests

Asymptomatic infections are frequent. In women, symptoms are vaginal discharge and dysuria, in men, urethritis, dysuria and discharge. Besides symptoms, indication for laboratory test is a high-risk sexual behaviour. Diagnosis is achievable only through nucleic acid amplification testing (NAAT). If available, NAAT diagnosis should be followed with an assay for macrolide resistance.

Therapy

Therapy for *M. genitalium* is indicated in case of identification of *M. genitalium* in clinical specimens or on an epidemiological basis.

Doxycycline has a poor efficacy (cure rates 30-40%), but does not increase resistance. Azithromycin has a cure rate of 85-95% in macrolide susceptible infections. An extended course appears to have a higher cure rate. A rapidly increasing prevalence of macrolide resistance, most likely due to widespread use of azithromycin as a 1 g single dose without test of cure, is drastically decreasing the overall cure rate. Moxifloxacin can be used as second line therapy but resistance is increasing.

Recommended treatment for uncomplicated *M. genitalium* infection:

Azithromycin 500 mg on day one, then 250 mg on days 2-5 (oral) or Josamycin 500 mg 3 times daily for 10 days (oral).

Recommended second line treatment and treatment for uncomplicated macrolide resistant *M. genitalium* infection:

Moxifloxacin 400 mg od for 7 - 10 days (oral).

Recommended third line treatment for persistent *M. genitalium* infection after azithromycin and moxifloxacin

Doxycycline 100 mg two times daily for 14 days can be tried and may cure 30%.

Pristinamycin 1 g four times daily for 10 days (oral).

Recommended treatment for complicated *M. genitalium* infection (PID, epididymitis)

Moxifloxacin 400 mg od for 14 days.

Introduction

Mycoplasmas are the smallest free-living micro-organisms.¹ In the urogenital tract, the relevant species are *M. genitalium, Ureaplasma urealyticum, U. parvum,* and *M. hominis. M. hominis* and the ureaplasmas will not be dealt with in the present guideline.

Mycoplasma genitalium was first isolated in 1980.² M. genitalium infection is unequivocally associated with male NGU³ and even stronger associated with nonchlamydial non-gonococcal urethritis (NCNGU). The prevalence of M. genitalium in men with NCNGU ranges from 10% to 35%³, thus contributing significantly to the overall burden of disease. In comparison, M. genitalium is detected in only 1% to 3.3% of men and women in the general population. 4-6 In women, several studies have demonstrated the association between M. genitalium and urethritis, cervicitis, endometritis, and pelvic inflammatory disease (PID). 7-11 In a recent meta-analysis, 12 significant associations were found between M. genitalium and cervicitis (pooled odds ratio (OR) 1.66), and pelvic inflammatory disease (pooled OR 2.14). M. genitalium has been associated with preterm birth (pooled OR 1.89), and spontaneous abortion (pooled OR 1.82), but the prevalence of M. qenitalium in pregnant women in Europe is low, 13,14 and therefore, the relative importance of *M. genitalium* is probably small. Studies have also shown an association with increased risk of tubal factor infertility (pooled OR 2.43). In sub-analyses that accounted for co-infections, Lis et al found these associations to be stronger. 12

Persistence of *M. genitalium* after treatment is associated with recurrent or persistent NGU, and up to 40% with this condition are *M. genitalium* positive.¹⁵ In a recent meta-analysis, persistent *M. genitalium* was associated with a pooled odds ratio of 26 for persistent urethritis.¹⁷ Thus, failure to eradicate *M. genitalium* leads to persistent or recurrent disease in the vast majority of men with persistent infection and diagnosis and optimal treatment is extremely important. The role of *M. genitalium* in facilitating HIV transmission, in particular in Sub-Saharan Africa¹⁸⁻²⁰ is another reason for concern when eradication fails due to inappropriate treatment.

Transmission

Transmission is primarily by direct genital-genital mucosal contact. Genital-anorectal transmission has been shown²¹ and may play a role as *M. genitalium* is commonly

found in the anal mucosa^{22,23} and the organism can be cultured from this site (Jensen, unpublished). Oral-genital contact is less likely to contribute to any significant extent, as carriage of *M. genitalium* in the oro-pharynx is low. Mother-to-child transmission at birth has not been systematically studied, but *M. genitalium* has been detected in the respiratory tract of newborn children.²⁴ The risk of contracting *M. genitalium* per sexual encounter has not been determined, but because *M. genitalium* is present in lower concentration in genital tract specimens than *C. trachomatis*,²⁵ it could be considered slightly less contagious than chlamydia.

There are no estimates of the global burden of disease. In STI patients, the prevalence is usually from 60 to 85% of that of *C. trachomatis*, but in the general population, the ratio is generally significantly lower.^{4,6}

Compared to *C. trachomatis*, the prevalence of *M. genitalium* infected patients appear to peak approximately 5 years later for both men and women and to remain higher in the older age-groups.^{26,27}

Clinical features

Urogenital infections

Symptoms and signs in women:

- Among STD clinic attendees, 40 75% are asymptomatic. 10,11
- Symptoms are related to cervical and urethral infection and include increased or altered vaginal discharge (<50%), dysuria or urgency (30%) and, rarely, intermenstrual or post coital bleeding or menorrhagia. 10,11,28
- Cervicitis.
- Rectal and pharyngeal infections are usually asymptomatic.
- Lower abdominal pain (<20%) should raise suspicion of pelvic inflammatory disease (PID).

Complications in women: 12

- PID (endometritis, salpingitis)
- Tubal factor infertility (probably)
- Sexually acquired reactive arthritis (SARA).

Symptoms and signs in men³

- 70% symptomatic. 30
- Urethritis (acute, persistent, and recurrent)
- Dysuria
- Urethral discharge
- Balanoposthitis has been associated with *M. genitalium* infection in one study.³¹

Complications in men:

- SARA.²⁹
- Epididymitis

Ocular infections

Ocular infections can result in conjunctivitis in adults³² but is not systematically studied. Neonatal conjunctivitis has not been systematically studied

Indications for laboratory testing [IV; C]

Symptoms

- Symptoms or signs of urethritis in men
- Mucopurulent cervicitis
- Cervical or vaginal discharge with risk factor for STI
- Intermenstrual or post-coital bleeding
- Acute pelvic pain and/or PID
- Acute epididymo-orchitis in a male aged <50 years

Risk factors

- Any of the above symptoms in a regular sexual partner
- Persons with high-risk sexual behaviour (age <40 years and >3 new sexual contacts in the last year, more than 5 life-time partners and never tested)
- Sexual contact of persons with an STI or PID in particular contacts of M.
 genitalium infected persons
- Before termination of pregnancy or other procedures, that breaks the cervical barrier.

 Regular testing of MSM, including anal sampling could be considered due to the risk of increased HIV transmission

Laboratory diagnostics [III; B]

Recommended diagnostic assays:

Nucleic acid amplification tests (NAATs) identifying *M. genitalium* specific nucleic acid (DNA or RNA) in clinical specimens are the only useful methods for diagnosis [III; B]. However, no commercially available NAAT assays have been evaluated up to the US FDA approval standard, and the CE marked tests on the market suffer from limited validation. Consequently, it is extremely important that diagnostic laboratories carefully validate any commercial or in-house assays and participate in external quality assurance assessment (EQA) schemes such as the EQUALIS EQA scheme (http://www.equalis.se/sv/vaar-verksamhet/extern-kvalitetssaekring/kvalitetssaekringsprogram/m-r/mycoplasma-genitalium-nukleinsyra-288/). This EQA scheme has demonstrated substantial differences in the sensitivity of participating laboratories.

With the widespread macrolide resistance in Europe, it is strongly recommended that all positive tests be followed up with an assay capable of detecting macrolide resistance mediating mutations. A variety of methods are available for this purpose, ^{27,33-37} and the main determinant for the selection of an assay is the practical aspects from a laboratory point of view, and the sensitivity measured as the proportion of screening positive tests capable of being resistance typed. The latter aspect varies significantly between assays.

Determination of moxifloxacin resistance can also be carried out using molecular methods although the correlate between mutations in parC and in vitro moxifloxacin resistance is less clear. At present, detection of moxifloxacin resistance mediating mutations is probably not indicated on a routine basis in Europe, as the level of resistance is low (<5%)³⁸ but it may be considered in the Asia-Pacific region where moxifloxacin resistance is more common³⁹⁻⁴¹ or in patients having acquired the infection in this region.

Specimens

Due to the various assay formats, it is difficult to make firm conclusions regarding the optimal sample type. First void urine (FVU) from men and women provide a good diagnostic specimen which may be self-obtained.²⁶ No data regarding the importance of holding urine for a certain time are available, so procedures already in place for *C. trachomatis* sampling can be followed. Vaginal swab (physician or self-collected) also provide an appropriate sensitivity.⁴²⁻⁴⁴

No data is available regarding time after exposure to testing, but in analogy to *C. trachomatis*, a two-week period is considered the minimal incubation time. Anal samples are useful in MSM where as many as 70% of the infections will be missed if this site is not sampled,⁴⁵ but may also be relevant in women at risk.²³ The association between an anal infection and symptoms is uncertain, but the infection is likely to be transmitted if not detected and treated.

In most settings it will be appropriate to use the same sampling procedure as for *C. trachomatis* testing. However, some transport media such as the Aptima® transport medium designed for *C. trachomatis* NAAT will lyse *M. genitalium*, and may provide a poor sensitivity in an in-house assay. This should be careful evaluated for all in-house assays and even for assays where a validated collection and nucleic acid purification kit is not included [III B].

Management of patients

Information, explanation and advice for the patient

- Patients with M. genitalium infection should be advised to abstain from unprotected sexual contact until they and their partners have completed treatment, their symptoms have resolved, and their test of cure negative [IV; C].
- Patients with M. genitalium infection (and their sexual contacts) should be given information about the infection, including details about transmission, prevention and complications. It is recommended that both verbal and written information be provided. Patient information leaflets are available at the IUSTI website [IV; C].
- Patients with anal infection including MSM should be informed about the risk
 of transmission from this site and that the infection may be more difficult to
 eradicate. Consequently, a test of cure is important.

 Patients with M. genitalium infection should be screened for other STIs, including C. trachomatis, N. gonorrhoeae, syphilis, HIV, and T. vaginalis where appropriate [IV; C].

Pregnancy

• *M. genitalium* infections during pregnancy may be associated with a slight increase in the risk of spontaneous abortion and preterm birth. In macrolide susceptible infections, a five-day-course of azithromycin is generally acceptable. The choice of drugs for macrolide resistant infections is difficult, and risk associated with treatment with the available antibiotics may outweigh the risk of adverse pregnancy outcome. Thus, treatment, especially in women with infection with a macrolide resistant *M. genitalium* strain, may be considered postponed until after delivery. Although little is known about transmission during birth, the neonate should be observed for signs of infection, primarily conjunctivitis and respiratory tract infection [IV; C].

Indications for therapy [IV; C]

- Identification of *M. genitalium* specific nucleic acid in a clinical specimen.
- On epidemiological grounds if a recent sexual contact has confirmed M.
 genitalium infection (ideally specimens for M. genitalium NAAT should be
 collected before treatment and treatment should await the result of testing).

Therapy

Treatment of individuals with *M. genitalium* urogenital infection prevents sexual transmission and probably complications, including PID⁵ and tubal-factor infertility. Only few antimicrobial classes have activity against mycoplasmas including tetracyclines, macrolides, and fluoroquinolones.

Doxycycline has a poor efficacy with microbiological cure rates between 30% and 40%, whereas azithromycin given as a 1 g single dose has a cure rate of approximately 85% in macrolide susceptible infections. A rapidly increasing prevalence of macrolide resistance, most likely due to widespread use of azithromycin as a 1 g single dose without test of cure, however, is drastically decreasing the overall cure rate.

Azithromycin given as an extended regimen with 500 mg day one followed by 250 mg days 2-5 (1.5g total dose) is recommended as the primary choice for treatment of *M. genitalium* infections. Using extended azithromycin or other macrolide antibiotics after failure with the 1g single dose regimen will not eradicate *M. genitalium*.

Macrolide resistance rates varies significantly geographically, but where azithromycin 1g single dose is used for treatment of NGU, it is usually found in 30-45% of samples. 27,38,41,50

Josamycin is widely used in Russia with 500 mg three times a day for 10 days, but will not eradicate macrolide resistant strains.

Moxifloxacin is the most commonly used second line antimicrobial. It is bactericidal and has a cure rate approaching 100% in infections with susceptible strains. ^{16,51-53}
However, resistance has developed with treatment failures in up to 30%, primarily in patients from the Asia-Pacific region. A significant proportion of the *M. genitalium* strains had concurrent macrolide resistance mediating mutations leaving very few available treatment options. ^{40,54-56}

Pristinamycin is the only antimicrobial with documented activity in patients failing both azithromycin, moxifloxacin, and in many cases also extended dosage doxycycline (100 mg twice daily for 14 days). In Europe, it is registered only in France, but can be acquired after special permit in most European countries. It should only be used in the maximal recommended dose of 1g four times a day for 10 days (oral) as these patients are facing their last known active antimicrobial therapy and dose reduction may lead to failure.

Recommended treatment for uncomplicated *M. genitalium* infection in the absence of macrolide resistance mediating mutations [IIb;B]

- Azithromycin 500 mg on day one, then 250 mg od days 2-5 (oral)
- Josamycin 500 mg 3 times daily for 10 days [IV.C]

Recommended treatment for uncomplicated macrolide resistant *M. genitalium* infection [IIb;B]

• Moxifloxacin 400 mg od for 7 - 10 days (oral). The optimal duration of treatment is uncertain and a few observational studies have found higher curerate after longer treatment in cervicitis. 54

Recommended second line treatment for uncomplicated persistent *M. genitalium* infection [IIb;B]

Moxifloxacin 400 mg od for 7 - 10 days (oral)

Recommended third line treatment for persistent *M. genitalium* infection after azithromycin and moxifloxacin [III;B]

- Doxycycline 100 mg two times daily for 14 days can be tried and will eradicate

 M. genitalium from approximately 30% of the patients, but the patient must be informed about the poor eradication rate and accept to comply with advice regarding sexual abstinence or condom use.
- Pristinamycin 1g four times daily for 10 days (oral). The patient should be informed about the need to comply strictly with the dosage scheme.

Recommended treatment for complicated *M. genitalium* infection (PID, epididymitis) [IV;C]

Moxifloxacin 400 mg od for 14 days (oral).⁵⁷

Partner notification

- Contact notification should be performed and documented by appropriately trained professionals at the time of diagnosis to improve outcome [IV;C]
- Sexual contacts should be contacted and offered testing together with counselling and treatment for M. genitalium infection (same antimicrobial as index patient) and testing for other STIs [IV; C]
- All sexual contacts within the preceding 6 months of onset of symptoms or diagnosis should ideally be evaluated, tested and treated [IV; C].
- If sexual contacts do not attend for evaluation and testing, epidemiological treatment should be offered to a current partner with the same regimen as given to the index patient [IV; C]

Follow-up and test of cure (TOC)

A TOC should be routinely performed in all patients due to the high prevalence

of macrolide resistance either present pre-treatment or developing during

treatment with azithromycin and in the absence of routine testing for

fluoroquinolone resistance [III; B]. This recommendation differs from the

BASHH and CDC guidelines^{58,59} where TOC for asymptomatic cases is not

recommended. However, it is a clinical experience that many patients enter a

stage of few or no symptoms after treatment, but with persistent carriage and

subsequent risk for spread of resistance in the community. Test of cure samples

should be collected no earlier than three weeks after start of treatment [III, B].

In patients responding to treatment, M. genitalium will be undetectable within

one week in most patients, but tests may become temporarily false negative in

patients failing treatment. 60

Acknowledgements:

Paddy Horner, Keith Radcliffe, Henry de Vries, Anne Olsen, and Gilbert Donders are

thanked for comments to the guideline.

Proposed guideline review date: 2018

Composition of Editorial Board:

http://www.iusti.org/regions/Europe/pdf/2013/Editorial Board.pdf

List of contributing organizations:

http://www.iusti.org/regions/Europe/euroguidelines.ht

Qualifying statement:

Decisions to follow these recommendations must be based on professional clinical

judgement, consideration of individual patient circumstances and available resources.

All possible care has been undertaken to ensure publication of the correct dosage of

medication and route of administration. However, it remains the responsibility of the

prescribing clinician to ensure the accuracy and appropriateness of the medication

they prescribe.

References

- 1. Taylor-Robinson D, Gilroy CB, Jensen JS. The biology of *Mycoplasma genitalium*. *Venereology* 2000;**13**:119-27.
- 2. Tully JG, Taylor-Robinson D, Cole RM, Rose DL. A newly discovered mycoplasma in the human urogenital tract. *Lancet* 1981;I:1288-91.
- 3. Taylor-Robinson D, Jensen JS. *Mycoplasma genitalium*: from Chrysalis to Multicolored Butterfly. *Clin Microbiol Rev* 2011;**24**(3):498-514.
- 4. Andersen B, Sokolowski I, Østergaard L, et al. *Mycoplasma genitalium*: prevalence and behavioural risk factors in the general population. *Sex Transm Infect* 2007;**83**(3):237-41.
- 5. Oakeshott P, Aghaizu A, Hay P, et al. Is *Mycoplasma genitalium* in women the "New Chlamydia?" A community-based prospective cohort study. *Clin Infect Dis* 2010;**51**(10):1160-6.
- 6. Manhart LE, Holmes KK, Hughes JP, Houston LS, Totten PA. *Mycoplasma genitalium* among young adults in the United States: an emerging sexually transmitted infection. *Am J Public Health* 2007;**97**(6):1118-25.
- 7. Cohen CR, Manhart LE, Bukusi EA, et al. Association between *Mycoplasma genitalium* and acute endometritis. *Lancet* 2002;**359**(9308):765-6.
- 8. Manhart LE, Critchlow CW, Holmes KK, et al. Mucopurulent cervicitis and *Mycoplasma genitalium*. *J Infect Dis* 2003;**187**(4):650-7.
- 9. Cohen CR, Mugo NR, Astete SG, et al. Detection of *Mycoplasma genitalium* in women with laparoscopically diagnosed acute salpingitis. *Sex Transm Infect* 2005;**81**(6):463-6.
- 10. Anagrius C, Loré B, Jensen JS. *Mycoplasma genitalium*: prevalence, clinical significance, and transmission. *Sex Transm Infect* 2005;**81**(6):458-62.
- 11. Falk L, Fredlund H, Jensen JS. Signs and symptoms of urethritis and cervicitis among women with or without *Mycoplasma genitalium* or *Chlamydia trachomatis* infection. *Sex Transm Infect* 2005;**81**(1):73-8.
- 12. Lis R, Rowhani-Rahbar A, Manhart LE. *Mycoplasma genitalium* infection and female reproductive tract disease: A meta-analysis. *Clin Infect Dis* 2015.
- 13. Oakeshott P, Hay P, Taylor-Robinson D, et al. Prevalence of *Mycoplasma genitalium* in early pregnancy and relationship between its presence and pregnancy outcome. *BJOG* 2004;**111**(12):1464-7.
- 14. Peuchant O, Le RC, Desveaux C, et al. Screening for *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, and *Mycoplasma genitalium* should it be integrated into routine pregnancy care in French young pregnant women? *Diagn Microbiol Infect Dis* 2015;**82**(1):14-9.
- 15. Wikström A, Jensen JS. *Mycoplasma genitalium*: a common cause of persistent urethritis among men treated with doxycycline. *Sex Transm Infect* 2006;**82**(4):276-9.

- 16. Bradshaw CS, Chen MY, Fairley CK. Persistence of *Mycoplasma genitalium* following azithromycin therapy. *PLoS ONE* 2008;**3**(11):e3618.
- 17. Jensen JS, Bradshaw C. Management of *Mycoplasma genitalium* infections can we hit a moving target? *BMC Infect Dis* 2015;**15**(1):343.
- 18. Vandepitte J, Weiss HA, Bukenya J, et al. Association between Mycoplasma genitalium infection and HIV acquisition among female sex workers in Uganda: evidence from a nested case-control study. Sex Transm Infect 2014.
- 19. Mavedzenge SN, Van der Pol B, Weiss HA, et al. The association between *Mycoplasma genitalium* and HIV-1 acquisition among women in Zimbabwe and Uganda. *AIDS* 2012.
- 20. Manhart LE. Another STI associated with HIV-1 acquisition: now what? *AIDS* 2012;**26**(5):635-7.
- 21. Edlund M, Blaxhult A, Bratt G. The spread of *Mycoplasma genitalium* among men who have sex with men. *Int J STD AIDS* 2012;**23**(6):455-6.
- 22. Soni S, Alexander S, Verlander N, et al. The prevalence of urethral and rectal *Mycoplasma genitalium* and its associations in men who have sex with men attending a genitourinary medicine clinic. *Sex Transm Infect* 2010;**86**(1):21-4.
- 23. Lillis RA, Nsuami MJ, Myers L, Martin DH. Utility of urine, vaginal, cervical, and rectal specimens for detection of *Mycoplasma genitalium* in women. *J Clin Microbiol* 2011;**49**(5):1990-2.
- 24. Luki N, Lebel P, Boucher M, et al. Comparison of polymerase chain reaction assay with culture for detection of genital mycoplasmas in perinatal infections. *Eur J Clin Microbiol Infect Dis* 1998;**17**(4):255-63.
- 25. Walker J, Fairley CK, Bradshaw CS, et al. The difference in determinants of *Chlamydia trachomatis* and *Mycoplasma genitalium* in a sample of young Australian women. *BMC Infect Dis* 2011;**11**:35.
- 26. Jensen JS, Björnelius E, Dohn B, Lidbrink P. Comparison of first void urine and urogenital swab specimens for detection of *Mycoplasma genitalium* and *Chlamydia trachomatis* by polymerase chain reaction in patients attending a sexually transmitted disease clinic. *Sex Transm Dis* 2004;31(8):499-507.
- 27. Salado-Rasmussen K, Jensen JS. *Mycoplasma genitalium* testing pattern and macrolide resistance: A Danish nationwide retrospective survey. *Clin Infect Dis* 2014;**59**(1):24-30.
- 28. Bjartling C, Osser S, Persson K. *Mycoplasma genitalium* in cervicitis and pelvic inflammatory disease among women at a gynecologic outpatient service. *Am J Obstet Gynecol* 2012;**206**(6):476-8.
- 29. Taylor-Robinson D, Gilroy CB, Horowitz S, Horowitz J. *Mycoplasma genitalium* in the joints of two patients with arthritis. *Eur J Clin Microbiol Infect Dis* 1994;**13**(12):1066-9.
- 30. Falk L, Fredlund H, Jensen JS. Symptomatic urethritis is more prevalent in men infected with *Mycoplasma genitalium* than with *Chlamydia trachomatis*. *Sex Transm Infect* 2004;**80**(4):289-93.

- 31. Horner PJ, Taylor-Robinson D. Association of *Mycoplasma genitalium* with balanoposthitis in men with non-gonococcal urethritis. *Sex Transm Infect* 2010.
- 32. Björnelius E, Jensen JS, Lidbrink P. Conjunctivitis Associated with *Mycoplasma genitalium* Infection. *Clin Infect Dis* 2004;**39**(7):e67-e69.
- 33. Jensen JS, Bradshaw CS, Tabrizi SN, Fairley CK, Hamasuna R. Azithromycin treatment failure in *Mycoplasma genitalium*-positive patients with nongonococcal urethritis is associated with induced macrolide resistance. *Clin Infect Dis* 2008;**47**(12):1546-53.
- 34. Twin J, Jensen JS, Bradshaw CS, et al. Transmission and selection of macrolide resistant *Mycoplasma genitalium* infections detected by rapid high resolution melt analysis. *PLoS ONE* 2012;**7**(4):e35593.
- 35. Jensen JS. Protocol for the detection of *Mycoplasma genitalium* by PCR from clinical specimens and subsequent detection of macrolide resistance-mediating mutations in region V of the 23S rRNA gene. In: MacKenzie CR, Henrich B, editors. Diagnosis of Sexually Transmitted Diseases; Methods and Protocols. 903 ed. New York: Humana Press, Springer; 2012. p. 129-39.
- 36. Touati A, Peuchant O, Jensen JS, Bebear C, Pereyre S. Direct detection of macrolide resistance in *Mycoplasma genitalium* isolates from clinical specimens from France by use of real-time PCR and melting curve analysis. *J Clin Microbiol* 2014;**52**(5):1549-55.
- 37. Wold C, Sorthe J, Hartgill U, et al. Identification of macrolide-resistant Mycoplasma genitalium using real-time PCR. *J Eur Acad Dermatol Venereol* 2015.
- 38. Pond MJ, Nori AV, Witney AA, et al. High prevalence of antibiotic-resistant Mycoplasma genitalium in nongonococcal urethritis: the need for routine testing and the inadequacy of current treatment options. *Clin Infect Dis* 2014;**58**(5):631-7.
- 39. Shimada Y, Deguchi T, Nakane K, et al. Emergence of clinical strains of *Mycoplasma* genitalium harbouring alterations in *ParC* associated with fluoroquinolone resistance. *Int J Antimicrob Agents* 2010;**36**(3):255-8.
- 40. Couldwell DL, Tagg KA, Jeoffreys NJ, Gilbert GL. Failure of moxifloxacin treatment in *Mycoplasma genitalium* infections due to macrolide and fluoroquinolone resistance. *Int J STD AIDS* 2013;**24**(10):822-8.
- 41. Kikuchi M, Ito S, Yasuda M, et al. Remarkable increase in fluoroquinolone-resistant *Mycoplasma genitalium* in Japan. *J Antimicrob Chemother* 2014.
- 42. Hardick J, Giles J, Hardick A, et al. Performance of the Gen-Probe transcription-mediated amplification research assay compared to that of a multitarget real-time PCR for *Mycoplasma genitalium* detection. *J Clin Microbiol* 2006;**44**(4):1236-40.
- 43. Wroblewski JK, Manhart LE, Dickey KA, Hudspeth MK, Totten PA. Comparison of transcription-mediated amplification and PCR assay results for various genital specimen types for detection of *Mycoplasma genitalium*. *J Clin Microbiol* 2006;**44**(9):3306-12.
- 44. Carlsen KH, Jensen JS. *Mycoplasma genitalium* PCR: does freezing of specimens affect sensitivity? *J Clin Microbiol* 2010;**48**(10):3624-7.

- 45. Reinton N, Moi H, Olsen AO, et al. Anatomic distribution of *Neisseria gonorrhoeae*, *Chlamydia trachomatis* and *Mycoplasma genitalium* infections in men who have sex with men. *Sex Health* 2013;**10**(3):199-203.
- 46. Björnelius E, Anagrius C, Bojs G, et al. Antibiotic treatment of symptomatic *Mycoplasma genitalium* infection in Scandinavia: a controlled clinical trial. *Sex Transm Infect* 2008;**84**(1):72-6.
- 47. Mena LA, Mroczkowski TF, Nsuami M, Martin DH. A randomized comparison of azithromycin and doxycycline for the treatment of *Mycoplasma genitalium*-positive urethritis in men. *Clin Infect Dis* 2009;**48**(12):1649-54.
- 48. Schwebke JR, Rompalo A, Taylor S, et al. Re-evaluating the treatment of nongonococcal urethritis: Emphasizing emerging pathogens A Randomized Clinical Trial. *Clin Infect Dis* 2011;**52**(2):163-70.
- 49. Manhart LE, Gillespie CW, Lowens MS, et al. Standard treatment regimens for nongonococcal urethritis have similar but declining cure rates: a randomized controlled trial. *Clin Infect Dis* 2013;**56**(7):934-42.
- 50. Nijhuis RH, Severs TT, Van der Vegt DS, Van Zwet AA, Kusters JG. High levels of macrolide resistance-associated mutations in *Mycoplasma genitalium* warrant antibiotic susceptibility-guided treatment. *J Antimicrob Chemother* 2015.
- 51. Bradshaw CS, Jensen JS, Tabrizi SN, et al. Azithromycin failure in *Mycoplasma genitalium* urethritis. *Emerg Infect Dis* 2006;**12**(7):1149-52.
- 52. Jernberg E, Moghaddam A, Moi H. Azithromycin and moxifloxacin for microbiological cure of *Mycoplasma genitalium* infection: an open study. *Int J STD AIDS* 2008;**19**(10):676-9.
- 53. Anagrius C, Lore B, Jensen JS. Treatment of *Mycoplasma genitalium*. Observations from a Swedish STD Clinic. *PLoS ONE* 2013;**8**(4):e61481.
- 54. Terada M, Izumi K, Ohki E, Yamagishi Y, Mikamo H. Antimicrobial efficacies of several antibiotics against uterine cervicitis caused by *Mycoplasma genitalium*. *J Infect Chemother* 2012;**18**(3):313-7.
- 55. Gundevia Z, Foster R, Jamil MS, McNulty A. Positivity at test of cure following first-line treatment for genital *Mycoplasma genitalium*: follow-up of a clinical cohort. *Sex Transm Infect* 2015;**91**(1):11-3.
- 56. Bissessor M, Tabrizi SN, Twin J, et al. Macrolide resistance and azithromycin failure in a *Mycoplasma genitalium*-infected cohort and response of azithromycin failures to alternative antibiotic regimens. *Clin Infect Dis* 2015;**60**(8):1228-36.
- 57. Judlin P, Liao Q, Liu Z, et al. Efficacy and safety of moxifloxacin in uncomplicated pelvic inflammatory disease: the MONALISA study. *BJOG* 2010;**117**(12):1475-84.
- 58. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015;64(RR-03):1-137.
- 59. Horner P, Blee K, O'Mahony C, et al. 2015 UK National Guideline on the management of non-gonococcal urethritis. *Int J STD AIDS* 2015.

60.	Falk L, Enger M, Jensen JS. Time to eradication of <i>Mycoplasma genitalium</i> after antibiotic treatment in men and women. <i>J Antimicrob Chemother</i> 2015; 70 (11):3134-40.

APPENDICES

Search strategy

A Medline search was conducted in May 2015 using PubMed. The search heading was

kept broad (Mycoplasma genitalium) to include epidemiology, diagnosis, antimicrobial

resistance, drug therapy, clinical trials and prevention and control. Only publications

and abstracts in the English language were considered. The Cochrane library was

searched for all entries related to mycoplasma. Sexually transmitted diseases

guidelines produced by the US Centers for Disease Control (www.cdc.gov/std/) and the

British Association for Sexual Health and HIV (www.bashh.org) were also reviewed.

Appendix 1

Levels of evidence and Grading of recommendations

http://iusti.org/regions/Europe/pdf/2013/Levels_of_Evidence.pdf

Appendix 2

Declarations of interest

Jørgen Skov Jensen: None

Marco Cusini: None

Mikhail Gomberg: None

Harald Moi: None